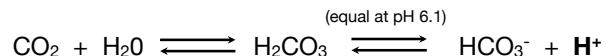

Topics

- Introduction to Organic Chemistry
- Hydrocarbons
- Functional groups
- Macromolecules
- Carbohydrates
- Lipids


Understanding acids and bases

		[H ₃ O ⁺]	pH	[OH ⁻]
MORE BASIC	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	
	1.0 × 10 ⁻¹⁴	14.00	1.0 × 10 ⁰	
	1.0 × 10 ⁻¹³	13.00	1.0 × 10 ⁻¹	
	1.0 × 10 ⁻¹²	12.00	1.0 × 10 ⁻²	
	1.0 × 10 ⁻¹¹	11.00	1.0 × 10 ⁻³	
	1.0 × 10 ⁻¹⁰	10.00	1.0 × 10 ⁻⁴	
NEUTRAL	1.0 × 10 ⁻⁹	9.00	1.0 × 10 ⁻⁵	
	1.0 × 10 ⁻⁸	8.00	1.0 × 10 ⁻⁶	
	1.0 × 10 ⁻⁷	7.00	1.0 × 10 ⁻⁷	
	1.0 × 10 ⁻⁶	6.00	1.0 × 10 ⁻⁸	
	1.0 × 10 ⁻⁵	5.00	1.0 × 10 ⁻⁹	
	1.0 × 10 ⁻⁴	4.00	1.0 × 10 ⁻¹⁰	
ACIDIC	1.0 × 10 ⁻³	3.00	1.0 × 10 ⁻¹¹	
	1.0 × 10 ⁻²	2.00	1.0 × 10 ⁻¹²	
	1.0 × 10 ⁻¹	1.00	1.0 × 10 ⁻¹³	
	1.0 × 10 ⁰	0.00	1.0 × 10 ⁻¹⁴	
	1.0 × 10 ¹	-1.00	1.0 × 10 ⁻¹⁵	

Chemical reactions

Physiological Buffers

Buffer	pKa (pH it likes)
Carbonate	6.1
Phosphate	7.2

CO₂ acts as an important **physiological buffer**. It is constantly being replenished by cellular metabolism

Buffers in Human blood

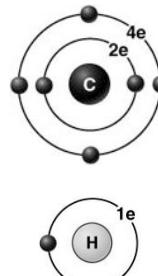
The body maintains the pH of blood at around 7.4

Serious health consequences result from changes of just a few tenths of a unit.

A decrease in blood pH is called **acidosis**, an increase is called **alkalosis**

Buffers maintain pH by binding H^+ or OH^- ions.

Buffers are most effective in a pH range near its pK_a .


The most important buffer for maintaining acid-base balance in the blood is the carbonic-acid-bicarbonate buffer.

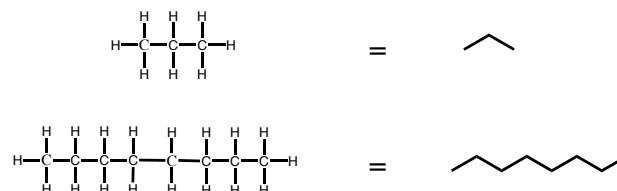
The equilibrium reaction is:

Carbon- the BACKBONE of life

- Carbon is unique. It always forms four bonds and it exclusively forms covalent bonds.
- Is found in all organic molecules
- Carbon-Carbon chains found in many biological molecules
- Carbon-Carbon and Carbon-Hydrogen are nonpolar

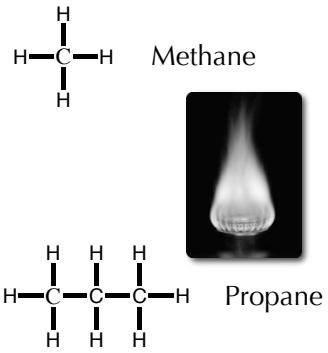
THE "ACIDOSIS" CYCLE

**Eat & Drink Acidic Substances
Little or No Exercise
Poor Digestion
Poor Bowel Elimination**

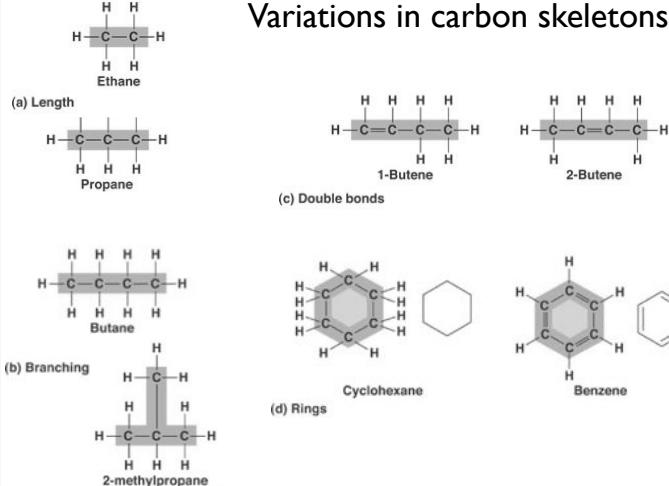

- poor health
- chronic illness
- cancer
- osteoporosis
- arthritis
- blocked lymph nodes
- inadequate perspiring
- & hundreds more !!

Tissues and organs become ACIDIC and rob calcium from bones to neutralize acidity. Calcium deposits develop in fatty acidic tissues (e.g. breasts)

Bones are "shorted" of calcium
Weak brittle porous bones

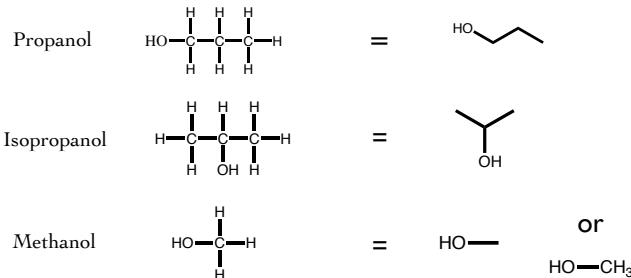

Chemistry Shorthand

- Covalent bonds are represented by lines
- In *shorthand* the Carbon-Carbon bonds are represented only by a line, and hydrogens are assumed



Nomenclature of Hydrocarbons

# of Carbons	Prefix
1	Methyl
2	Ethyl
3	Propyl
4	Butyl
5	Pentyl
6	Hexyl
7	Septyl
8	Octyl
9	Nonyl
10	Decyl



Variations in carbon skeletons

Organic Chemistry Shorthand

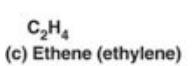
• All other atoms, and their bonds, are fully drawn out

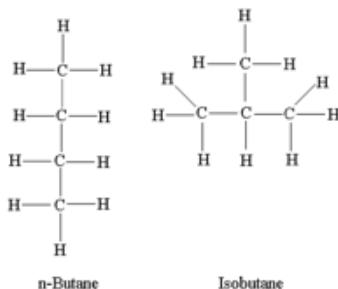
Molecular Formula

(a) Methane

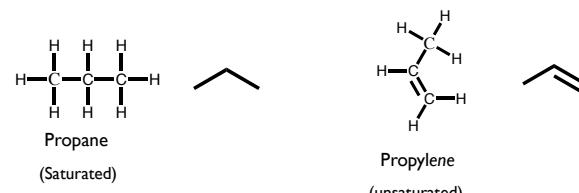
Structural Formula

(b) Ethane

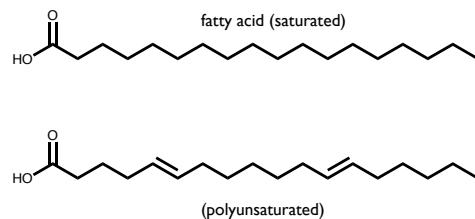

Ball-and-Stick Model


Space-Filling Model

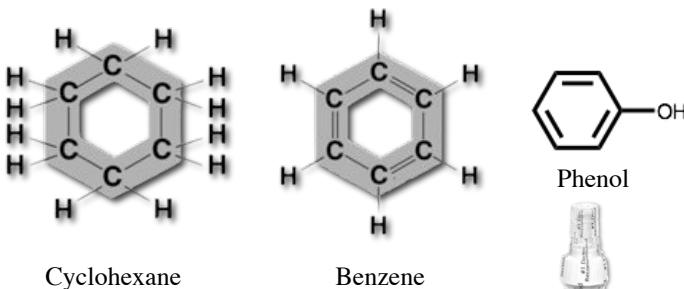
(c) Ethene (ethylene)



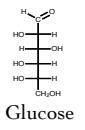
Isomers: compounds with the same molecular formula but different structural formulas.
Isomers do not necessarily share similar properties

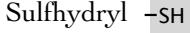
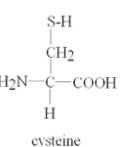

Saturation of Hydrocarbons

- Hydrocarbon chains that contain the maximum number of hydrogens and therefore have no C-C double covalent bonds are **saturated**.



Saturation of Hydrocarbons


- Hydrocarbon chains with more than one *unsaturated* bonds are called **polyunsaturated**.



Carbon Structures Can Also Form Rings

C-O Functional Groups

Functional Group	Example	Where Else Found
Hydroxyl (or "Alcohol")		 Carbohydrates
Aldehyde		 Carbohydrates, formaldehyde

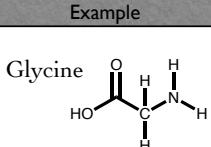
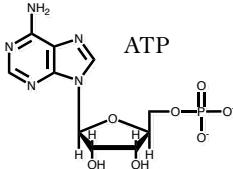
C-O Functional Groups

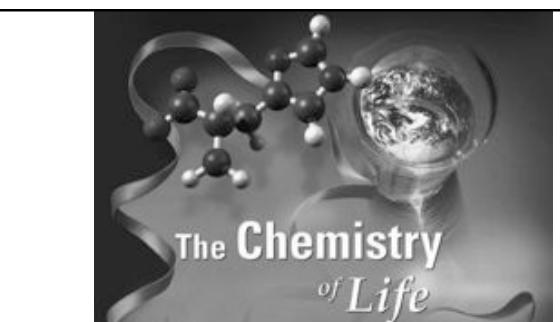
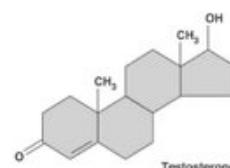
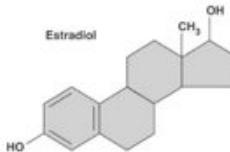
Functional Group	Example	Where Else Found
Sulphydryl		 Proteins
Methyl		 methanol Carbohydrates, Nucleic acids, proteins

C-O Functional Groups

Functional Group	Example	Where Else Found
Ketone		 Carbohydrates, Fat breakdown
Carboxyl		 Amino acids, fatty acids

Electronegativity



The Pauling Scale	
H	2.1
Li	1.0
Be	1.5
Na	0.9
Mg	1.2
K	0.8
Ca	1.0
Sc	1.3
Ti	1.5
V	1.6
Cr	1.8
Mn	1.8
Tc	1.8
Ru	1.8
Os	1.9
Zr	1.8
Ga	1.6
Ge	1.8
As	2.0
Se	2.4
Br	2.8
Rb	0.8
Str	1.0
Z	1.4
Zn	1.6
Ts	1.8
Ge	2.2
As	2.2
Se	2.2
Br	2.2
In	1.7
Sn	1.8
Sb	1.9
Te	2.1
I	2.5

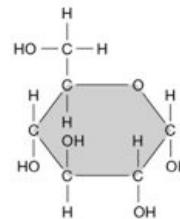
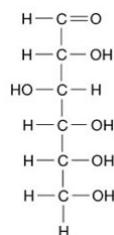




Element	Strength
F	4.0
O	3.5
N	4.0
S	2.5
C	2.5
H	2.1
P	2.1

* A difference of less than 0.5 results in mostly **equal** sharing (nonpolar)

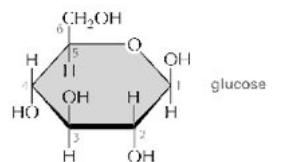
Other Functional Groups

Functional Group	Example	Where Else Found
Amino		Glycine
		Proteins/ Amino acids
Phosphate		ATP
		DNA

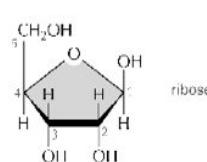



Living tissues: 70% water + 30% macromolecules

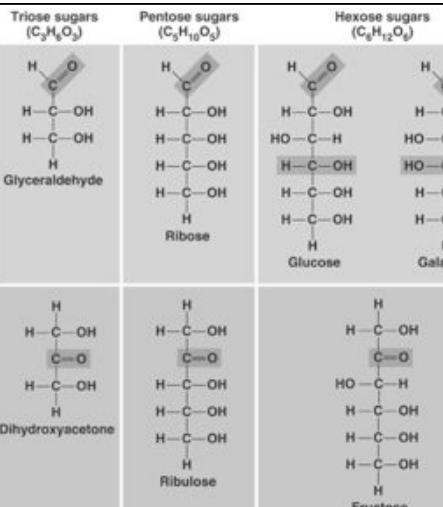
Carbohydrates
Lipids
Nucleic Acids
Proteins

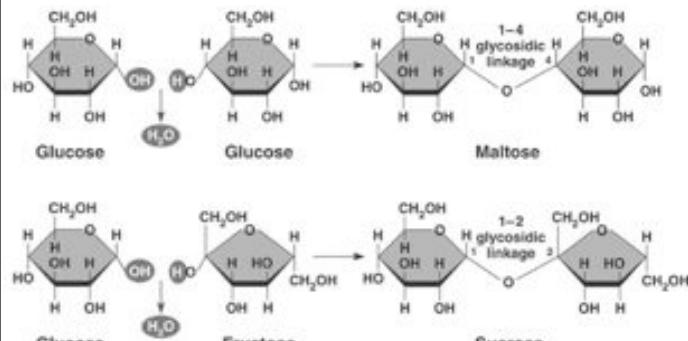

Carbohydrates

General formula: $C_n(H_2O)_n$
Carbon:Hydrogen:Oxygen of 1:2:1
e.g. $C_6H_{12}O_6$

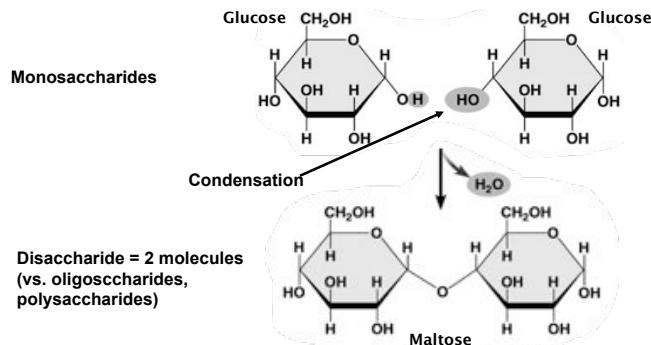


Carbohydrates


Glucose is a **monosaccharide (1:2:1 of C:H:O)**, a simple sugar.
 - Monosaccharides have different structures, but still have C:H:O ratio of ~ 1:2:1
 - simple molecules with up to 7 carbons


Major metabolic substrate
 - 6 carbon ring

Component of RNA/DNA
 - 5 carbon ring



Dehydration reaction

Carbohydrate Polymerization

Glycosidic linkages: covalent bonds between monosaccharides to form complex molecules

!!!!!! !!!! 4 major biochemical roles of carbohydrates !!! !!!! !!!

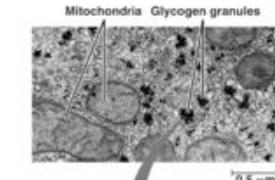
1. Energy storage
Polysaccharides: starch and glycogen
2. Transport of stored energy
3. Structural molecules to give shape to organisms
Cellulose
4. Signaling molecules that trigger biological responses

Polysaccharides

Starch

- Is the major **food storage** form of glucose in plants

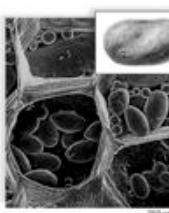
Chloroplast Starch



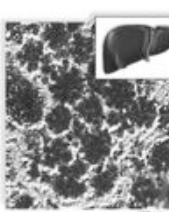
Amylose Amylopectin

Glycogen

- Is the major **food storage** form of glucose in humans


Mitochondria Glycogen granules

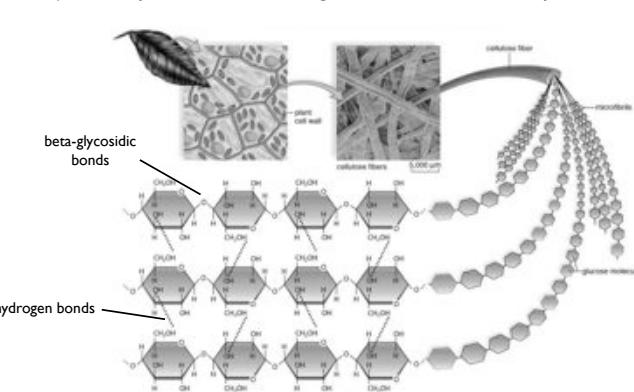
Glycogen


Starch and Glycogen

a. Starch

Amorphous nonbranched starch granule

b. Glycogen

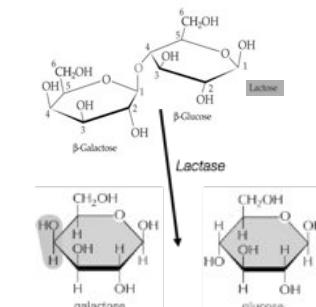
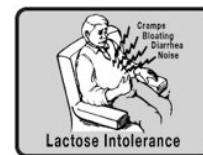


Highly branched glycogen granule

Chemical structures of glucose units in starch and glycogen are shown, illustrating the difference in branching. Labels: CH₂OH, H, OH, O.

Structural role of polysaccharides: Cellulose

Is a major component of the tough walls that enclose plant cells

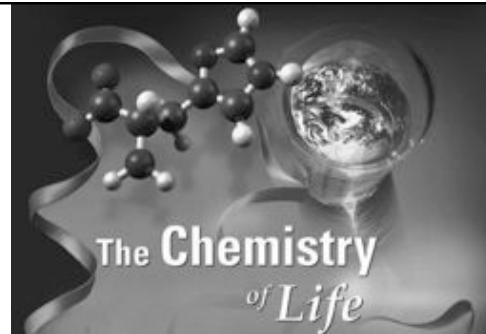



Cellulose

- Cellulose is difficult for mammals to digest
- Cows have microbes in their stomachs to facilitate this process
- Why do humans eat cellulose?

Lactose Intolerance

Other Polysaccharides


Chitin has repeating units of a modified glucose molecule.

An important component of exoskeletons

Peptidoglycan is a polysaccharide with repeating units of a modified glucose molecule.

An important component of bacterial cell walls

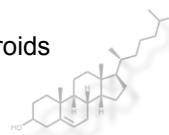


Living tissues: 70% water + 30% macromolecules
 Carbohydrates
Lipids
 Nucleic Acids
 Proteins

Lipids-types and roles

1. Fats and oils

- Storage of energy
- Insulation and protection



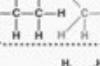
2. Phospholipids

- structural role in cell membranes

3. Steroids

Lipids Mmmmm.... Lard

- Hydrocarbons that are insoluble in water due to numerous nonpolar covalent bonds.


- Aggregate together, with weak *van der Waals* interactions holding individual molecules together.

- This forms a macromolecule of individual lipid molecules that are not covalently bonded

Chemical Bonds

TABLE 2.1 Chemical Bonds and Interactions

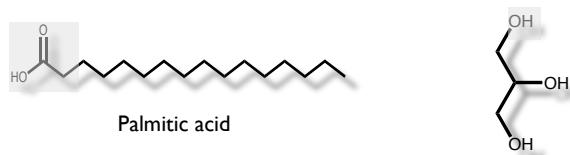
NAME	BASIS OF INTERACTION	STRUCTURE	BOND ENERGY*
Ionic attraction	Attraction of opposite charges		3-7
Covalent bond	Sharing of electron pairs		50-110
Hydrogen bond	Sharing of H atom		3-7
Hydrophobic interaction	Interaction of nonpolar substances in the presence of polar substances (especially water)		1-2
van der Waals interaction	Interaction of electrons of nonpolar substances		1

*Bond energy is the amount of energy (Kcal/mol) needed to separate two bonded or interacting atoms under physiological conditions.

PRINCIPLES OF LIFE, Table 2.1

© 2012 Sinauer Associates, Inc.

Triglycerides


- Most common unit of lipid is the triglyceride (simple lipid)
- If form solid at room temp = fat liquid = oil
- Composed of 3 fatty acids + 1 glycerol molecule

Fatty acid

Palmitic acid

Glycerol

