

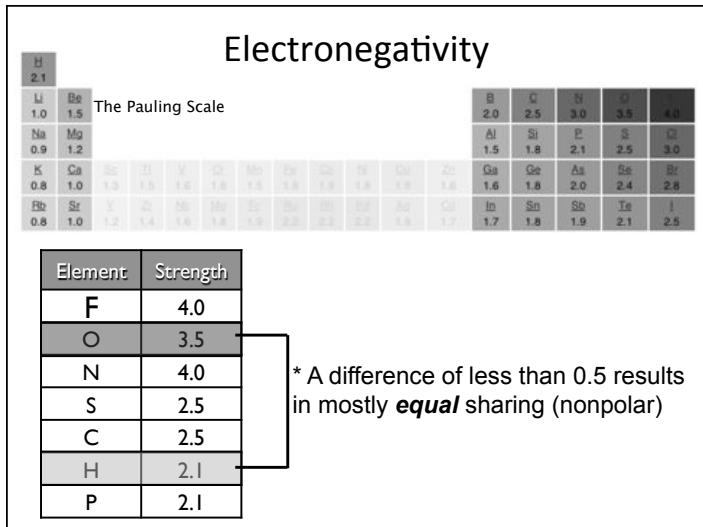
Topics

- Water- life's elixir
- Introduction to Organic Chemistry
- Acids / Bases
- Buffers
- Hydrocarbons
- Functional groups

Review: Covalent vs. Ionic bonds

- Two or more atoms joined in a bond are now referred to as a **molecule**
- Covalent bonds are stronger than ionic bonds
- Ionic bonds: steal e- Covalent bonds: share e-
- Atoms will typically share the same number of electrons they need to fill their outer orbital

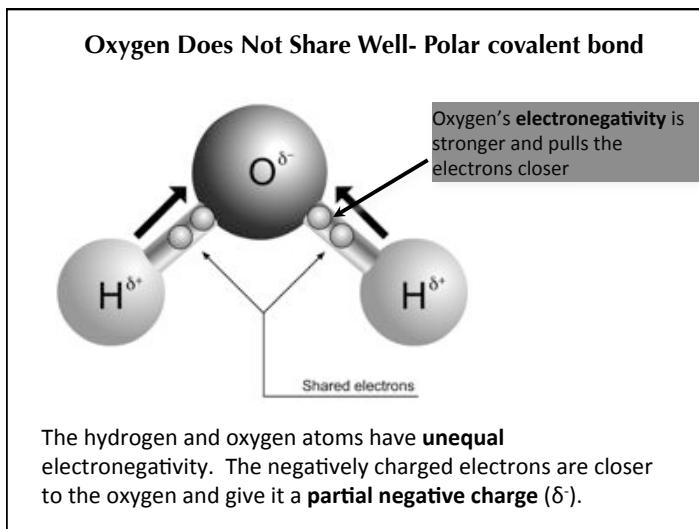
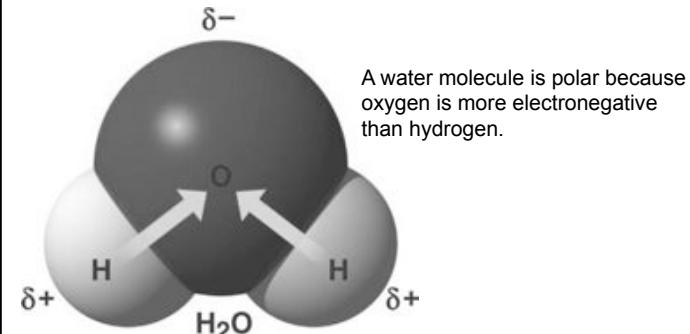
Equal Sharing is NONpolar



The hydrogen atoms have equal **electronegativity**. The negatively charged electrons are shared **equally**. This is a **nonpolar** covalent bond.

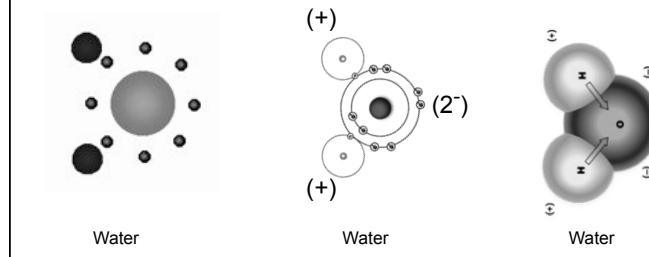
TABLE 2.1 Chemical Bonds and Interactions

NAME	BASIS OF INTERACTION	STRUCTURE	BOND ENERGY*
Ionic attraction	Attraction of opposite charges		3-7
Covalent bond	Sharing of electron pairs		50-110
Hydrogen bond	Sharing of H atom		3-7
Hydrophobic interaction	Interaction of nonpolar substances in the presence of polar substances (especially water)		1-2
van der Waals interaction	Interaction of electrons of nonpolar substances		1

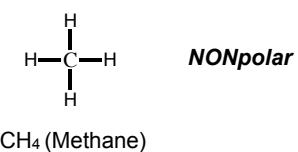
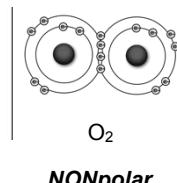


*Bond energy is the amount of energy (Kcal/mol) needed to separate two bonded or interacting atoms under physiological conditions.

Polar covalent bonds: unequal sharing of electrons

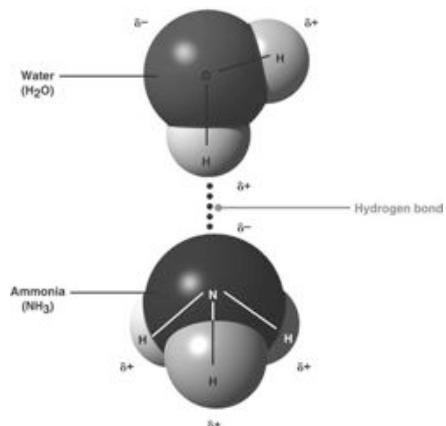
Electronegativity is the attraction of an atom for electrons.


There is a partial negative charge on the oxygen and partial positive charges on the hydrogen atoms.

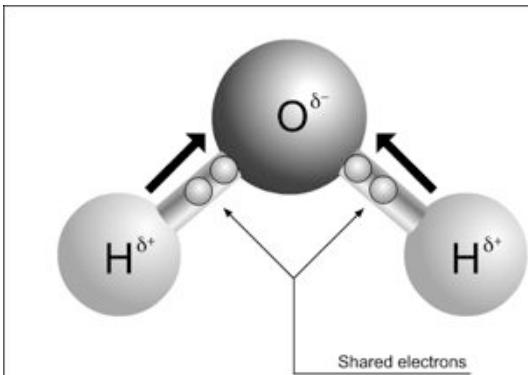
Water is a Polar Substance



- Because the water molecule does not share electrons equally, it is **“polar”**.
- Molecules containing covalent bonds with powerfully electronegative atoms will be polar.

(most important ones are **Oxygen and Nitrogen**)

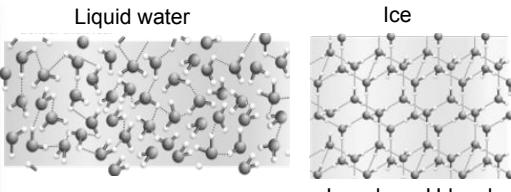


Electronegativity


Element	Strength
F	4.0
O	3.5
N	3.0
S	2.5
C	2.5
H	2.1
P	2.1

Hydrogen Bonds

Polar covalent bonds vs. hydrogen bonds



State of Water is Determined by Hydrogen Bonds

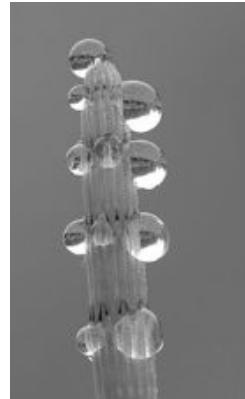
All three states of water exist on Earth

Hydrogen Bonds Account for High Heat Capacity of Water

All four hydrogen bonds must be broken for liquid water to become vapor, resulting in **high heat of vaporization**

Water vapor at boiling

Hydrogen Bonds Create Water Tension



Cohesion vs. Adhesion

Because of water's excellent solvent properties, and powerful hydrogen bonds, it is excellent at cohesion, adhesion, and **capillary action**.

Cohesion, the binding together of like molecules. Gives water the ability to resist coming apart when under pressure.

Adhesion, the binding together of different molecules.

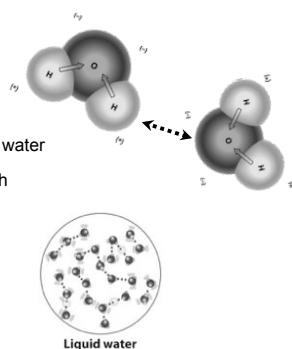
Capillary Action

Crying would be impossible without the capillary action of water.

Tiny **cannaliculi** transfer the liquid tears.

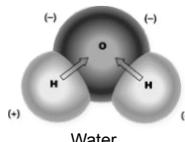
Hydrogen Bonds Account For Much of Water's Properties

- **Cohesion/Adhesion** - The binding together of molecules, often by hydrogen bonds.


- Surface tension
- Capillary action

- The three states of water

- Solid, liquid, vapor
- Ice is less dense than liquid water
- All three states exist on earth

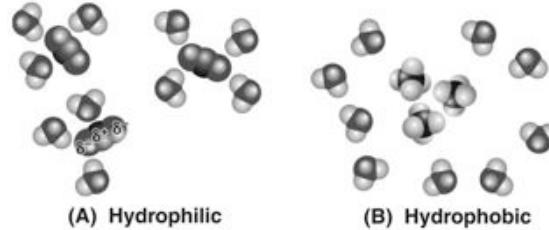

- High heat capacity

- High heat of vaporization

Liquid water

Polar and nonpolar substances

Water


- Polar substances

- Water interacts through H-bonds
- Any polar substance can interact with others through H-bonds
- Hydrophilic- water loving

- Nonpolar substances

- Nonpolar interacts with nonpolar
- Aggregate with one another and not with water
- Hydrophobic- water hating

Hydrophilic vs Hydrophobic

(A) Hydrophilic

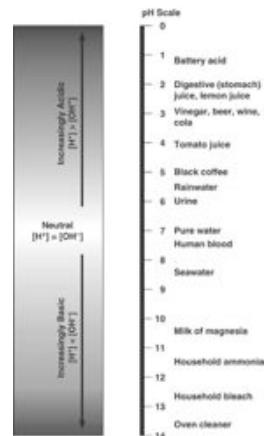
(B) Hydrophobic

Molecules with polar covalent bonds are attracted to water
= **hydrophilic**

Molecules with nonpolar covalent bonds are more attracted to each other
= **hydrophobic**

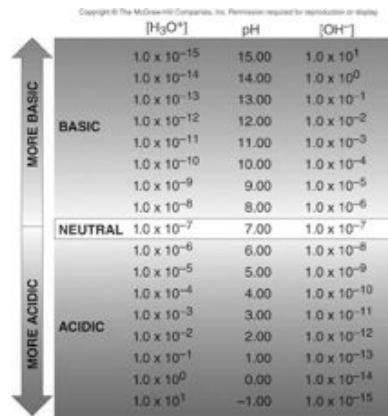
Understanding acids and bases

Important definitions:


Hydronium ion (H_3O^+ or H^+)

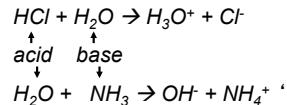
Acids

Bases


pH scale

$$\text{pH} = -\log[\text{H}^+]$$

Understanding acids and bases


Typical scale ranges from pH of 0-14

Definitions of Acids and Bases

An acid is a substance that donates a proton H⁺.

A base is a substance that accepts a proton H⁺.

Hydronium ion (H₃O⁺, or H⁺): a water molecule that has gained a proton. Such a molecule has an extra proton and carries a full positive charge.

Hydroxide ion (OH⁻): a water molecule that has lost a proton. Such a molecule has an extra electron and carries a full negative charge.

pH Is a Way To Measure Acidity

$$pH = \begin{cases} p = \log \text{ (negative)} \\ H = H^+ \text{ concentration} \end{cases} \quad pH = -\log[H^+]$$

[H⁺] = .0000001

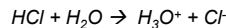
pH = 7

• pH of 7 is **neutral**

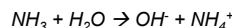
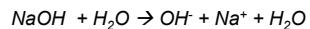
[H⁺] = .001

pH = 3

• pH less than 7 is **acidic**


[H⁺] = .0000000000000001

pH = 14



• pH greater than 7 is **basic**

Definitions of Acids and Bases- in context of water

An acid is a substance that dissolves in water to increase the concentration of H⁺ (aka H₃O⁺).

A base is a substance that dissolves in water to increase the concentration of OH⁻.

The pH scale: the pH of an aqueous solution is defined as the negative log of the hydronium ion concentration.

$$\text{pH} = -\log[\text{H}^+]$$

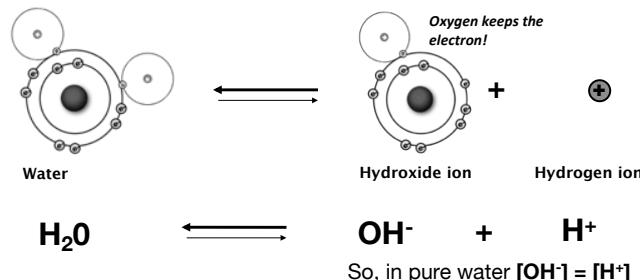
Mol of H ⁺ / L	pH
0.000000000001	14
0.000000000001	13
0.000000000001	12
0.000000000001	11
0.000000000001	10
0.000000000001	9
0.000000000001	8
0.000000000001	7
0.000000000001	6
0.000000000001	5
0.0001	4
0.01	3
0.1	2
1.0	1
	0

$$[\text{H}^+] \times [\text{OH}^-] = 10^{-14}$$

- In a neutral solution, pH = 7.
- As the concentration of hydronium ions increases, pH decreases;
- As the concentration of hydronium ions decreases, pH increases

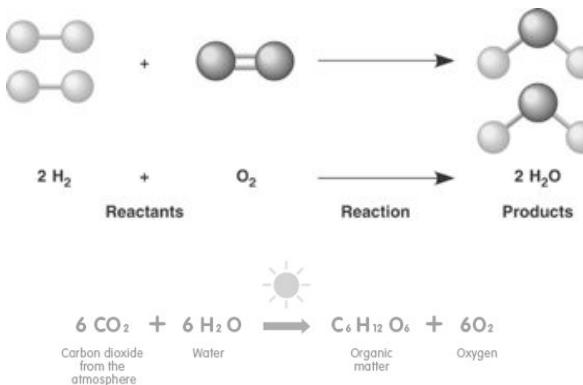
$$\text{pH} = -\log[\text{H}^+]$$

$$[\text{H}^+] \times [\text{OH}^-] = 10^{-14}$$

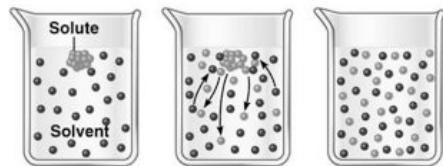

IF we know $[H^+]$, **THEN** we can deduce $[OH^-]$.

IF we know $[\text{OH}^-]$, **THEN** we can deduce $[\text{H}^+]$.

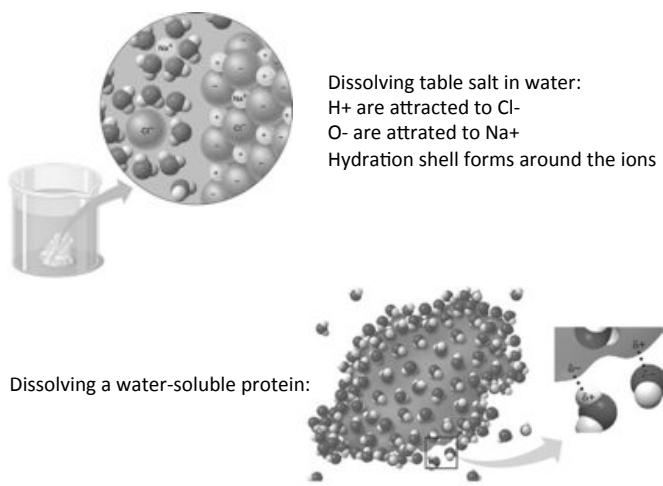
Hint: Add the exponents.

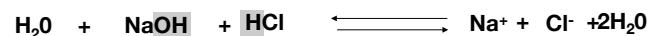
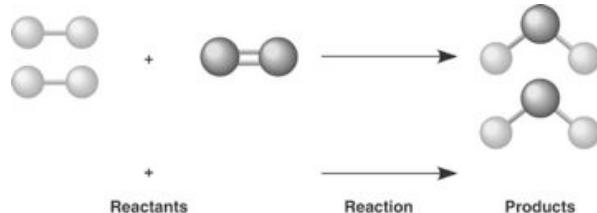

An aqueous solution has an $[H^+] = 10^{-4}$. Calculate $[OH^-]$ and pH.

Water can “dissociate”

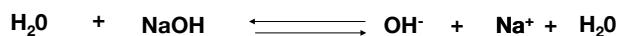


The covalent bond of hydrogen to oxygen is not as “strong” as some covalent molecules, due to the unequal sharing of electrons by oxygen


Chemical reactions



The SOLUTE is what YOU put in the SOLVENT

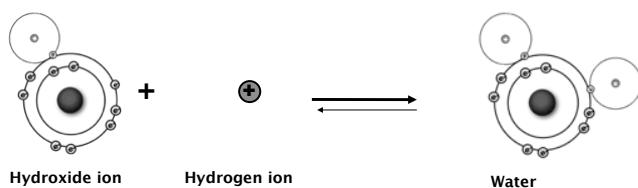
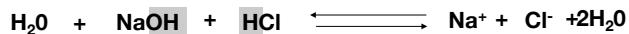
Dissolving table salt in water:
H+ are attracted to Cl-
O- are attracted to Na+
Hydration shell forms around the ions


Chemical reactions

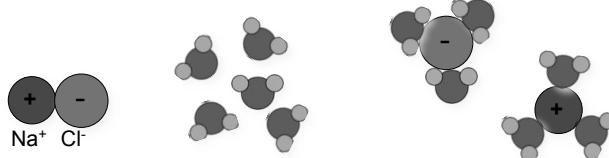
[H⁺] is increased!

HCl is an acid

In acid $[\text{H}^+] > [\text{OH}^-]$

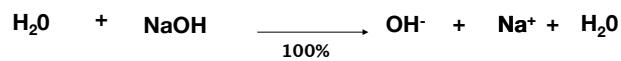
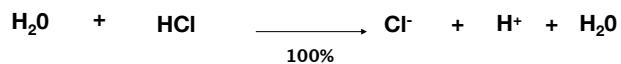



[OH⁻] is increased (which reduces [H⁺]).
NaOH is a base

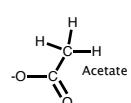
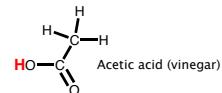

In base $[\text{OH}^-] > [\text{H}^+]$

When mixed, Acids and Bases Create Water

acids + bases create water

Sodium Chloride does not affect $[\text{H}^+]$


Strong vs. Weak Acid/Base

- A strong acid/base dissociates completely in water

- Weak acids/bases vary in their degree of dissociation

Buffers

Why doesn't Coca-Cola (or wine) make your blood acidic?

Buffers are substances that **resist a change in pH**.